
DeepTables
Release 0.1.1

Mar 31, 2020

Home:

1 DeepTables: Deep-learning Toolkit for Tabular data 1

2 Overview 3

3 Example 5
3.1 Quick-Start . 5
3.2 Exapmles . 7
3.3 ModelConfig . 8
3.4 Models . 15
3.5 Layers . 20
3.6 FAQ . 25

4 Indices and tables 27

i

ii

CHAPTER 1

DeepTables: Deep-learning Toolkit for Tabular data

DeepTables(DT) is a easy-to-use toolkit that enables deep learning to unleash great power on tabular data.

1

DeepTables, Release 0.1.1

2 Chapter 1. DeepTables: Deep-learning Toolkit for Tabular data

CHAPTER 2

Overview

MLP (also known as Fully-connected neural networks) have been shown inefficient in learning distribution represen-
tation. The “add” operations of the perceptron layer have been proven poor performance to exploring multiplicative
feature interactions. In most cases, manual feature engineering is necessary and this work requires extensive domain
knowledge and very cumbersome. How learning feature interactions efficiently in neural networks becomes the most
important problem.

A lot of models have been proposed to CTR prediction and continue to outperform existing state-of-the-art approaches
to the late years. Well-known examples include FM, DeepFM, Wide&Deep, DCN, PNN, etc. These models can also
provide good performance on tabular data under reasonable utilization.

DT aims to utilize the latest research findings to provide users with an end-to-end toolkit on tabular data.

DT has been designed with these key goals in mind:

• Easy to use, non-experts can also use.

• Provide good performance out of the box.

• Flexible architecture and easy expansion by user.

3

DeepTables, Release 0.1.1

4 Chapter 2. Overview

CHAPTER 3

Example

from deeptables.models.deeptable import DeepTable, ModelConfig
from deeptables.models.deepnets import DeepFM

dt = DeepTable(ModelConfig(nets=DeepFM))
dt.fit(X, y)
preds = dt.predict(X_test)

3.1 Quick-Start

3.1.1 Installation Guide

Requirements

Python 3: DT requires Python version 3.6 or 3.7.

Tensorflow >= 2.0.0: DT is based on TensorFlow. Please follow this tutorial to install TensorFlow for python3.

Install DeepTables

pip install deeptables

GPU Setup (Optional): If you have GPUs on your machine and want to use them to accelerate the training, you can
use the following command.

pip install deeptables[gpu]

Verify the install:

python -c "from deeptables.utils.quicktest import test; test()”

5

https://www.tensorflow.org/install/pip

DeepTables, Release 0.1.1

3.1.2 Getting started: 5 lines to DT

Supported Tasks

DT can be use to solve classification and regression prediction problems on tabular data.

Simple Example

DT supports these tasks with extremely simple interface without dealing with data cleaning and feature engineering.
You don’t even specify the task type, DT will automatically infer.

from deeptables.models.deeptable import DeepTable, ModelConfig
from deeptables.models.deepnets import DeepFM

dt = DeepTable(ModelConfig(nets=DeepFM))
dt.fit(X, y)
preds = dt.predict(X_test)

3.1.3 Datasets

DT has several build-in datasets for the demos or testing which covered binary classification, multi-class classification
and regression task. All datasets are accessed through deeptables.datasets.dsutils.

Adult

Associated Tasks: Binary Classification

Predict whether income exceeds $50K/yr based on census data. Also known as “Census Income” dataset.

from deeptables.datasets import dsutils
df = dsutils.load_adult()

See: http://archive.ics.uci.edu/ml/datasets/Adult

Glass Identification

Associated Tasks: Multi-class Classification

From USA Forensic Science Service; 6 types of glass; defined in terms of their oxide content (i.e. Na, Fe, K, etc)

from deeptables.datasets import dsutils
df = dsutils.load_glass_uci()

See: http://archive.ics.uci.edu/ml/datasets/Glass+Identification

Boston house-prices

Associated Tasks: Regression

from deeptables.datasets import dsutils
df = dsutils.load_boston()

See: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html

6 Chapter 3. Example

http://archive.ics.uci.edu/ml/datasets/Adult
http://archive.ics.uci.edu/ml/datasets/Glass+Identification
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html

DeepTables, Release 0.1.1

Examples

See: Examples

3.2 Exapmles

3.2.1 Binary Classification

This example demonstrate how to use WideDeep nets to solve a binary classification prediction problem.

from deeptables.models.deeptable import DeepTable, ModelConfig
from deeptables.models.deepnets import WideDeep
from deeptables.datasets import dsutils
from sklearn.model_selection import train_test_split

#Adult Data Set from UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/
→˓datasets/Adult
df_train = dsutils.load_adult()
y = df_train.pop(14)
X = df_train

#`auto_discrete` is used to decide wether to discretize continous varibles
→˓automatically.
conf = ModelConfig(nets=WideDeep, metrics=['AUC','accuracy'], auto_discrete=True)
dt = DeepTable(config=conf)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_
→˓state=42)

model, history = dt.fit(X_train, y_train, epochs=100)

score = dt.evaluate(X_test, y_test)

preds = dt.predict(X_test)

3.2.2 Multiclass Classification

This simple example demonstrate how to use a DNN(MLP) nets to solve a multiclass task on MNIST dataset.

from deeptables.models import deeptable
from tensorflow import keras

(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(60000, 784).astype('float32') / 255
x_test = x_test.reshape(10000, 784).astype('float32') / 255

conf = deeptable.ModelConfig(nets=['dnn_nets'], optimizer=keras.optimizers.RMSprop())
dt = deeptable.DeepTable(config=conf)

model, history = dt.fit(x_train, y_train, epochs=10)

score = dt.evaluate(x_test, y_test, batch_size=512, verbose=0)

preds = dt.predict(x_test)

3.2. Exapmles 7

https://deeptables.readthedocs.io/en/latest/examples.html

DeepTables, Release 0.1.1

3.2.3 Regression

This example shows how to use DT to predicting Boston housing price.

from deeptables.models.deeptable import DeepTable, ModelConfig
from deeptables.datasets import dsutils
from sklearn.model_selection import train_test_split

df_train = dsutils.load_boston()
y = df_train.pop('target')
X = df_train

conf = ModelConfig(
metrics=['RootMeanSquaredError'],
nets=['dnn_nets'],
dnn_params={

'dnn_units': ((256, 0.3, True), (256, 0.3, True)),
'dnn_activation': 'relu',

},
earlystopping_patience=5,

)

dt = DeepTable(config=conf)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_
→˓state=42)
model, history = dt.fit(X_train, y_train, epochs=100)

score = dt.evaluate(X_test, y_test)

3.3 ModelConfig

ModelConfig is the most important parameter in DT. It is used to set how to clean and preprocess the data automat-
ically, and how to assemble various network components to building a neural nets for prediction tasks, as well as the
setting of hyper-parameters of nets, etc. If you do not change any settings in ModelConfig, DT will work in most cases
as well. However, you can get a better performance by tuning the parameters in ModelConfig.

We describe in detail below.

3.3.1 Simple use case for ModelConfig

from deeptables.models.deeptable import DeepTable, ModelConfig
from deeptables.models.deepnets import DeepFM

conf = ModelConfig(
nets=DeepFM, # same as `nets=['linear','dnn_nets','fm_nets']`
categorical_columns='auto', # or categorical_columns=['x1', 'x2', 'x3', ...]
metrics=['AUC', 'accuracy'], # can be `metrics=['RootMeanSquaredError']` for

→˓regression task
auto_categorize=True,
auto_discrete=False,
embeddings_output_dim=20,
embedding_dropout=0.3,
)

(continues on next page)

8 Chapter 3. Example

DeepTables, Release 0.1.1

(continued from previous page)

dt = DeepTable(config=conf)
dt.fit(X, y)

3.3.2 Parameters

nets

list of str or custom function, (default=['dnn_nets'])

You can use multiple components to compose neural network joint training to perform prediction tasks.

The value of nets can be any combination of component name, preset model and custom function.

components:

• ‘dnn_nets’

• ‘linear’

• ‘cin_nets’

• ‘fm_nets’

• ‘afm_nets’

• ‘opnn_nets’

• ‘ipnn_nets’

• ‘pnn_nets’,

• ‘cross_nets’

• ‘cross_dnn_nets’

• ‘dcn_nets’,

• ‘autoint_nets’

• ‘fg_nets’

• ‘fgcnn_cin_nets’

• ‘fgcnn_fm_nets’

• ‘fgcnn_ipnn_nets’

• ‘fgcnn_dnn_nets’

• ‘fibi_nets’

• ‘fibi_dnn_nets’

preset models: in package deeptables.models.deepnets

• DeepFM

• xDeepFM

• DCN

• PNN

• WideDeep

• AutoInt

3.3. ModelConfig 9

DeepTables, Release 0.1.1

• AFM

• FGCNN

• FibiNet

custom function:

def custom_net(embeddings, flatten_emb_layer, dense_layer, concat_emb_dense, config,
→˓model_desc):

out = layers.Dense(10)(flatten_emb_layer)
return out

examples:

from deeptables.models.deeptable import ModelConfig, DeepTable
from deeptables.models import deepnets
from tensorflow.keras import layers

#preset model
conf = ModelConfig(nets=deepnets.DeepFM)

#list of str(name of component)
conf = ModelConfig(nets=['linear','dnn_nets','cin_nets','cross_nets'])

#mixed preset model and names
conf = ModelConfig(nets=deepnets.WideDeep+['cin_nets'])

#mixed names and custom function
def custom_net(embeddings, flatten_emb_layer, dense_layer, concat_emb_dense, config,
→˓model_desc):

out = layers.Dense(10)(flatten_emb_layer)
return out

conf = ModelConfig(nets=['linear', custom_net])

categorical_columns

list of strings or ‘auto’, optional, (default='auto')

Only categorical features will be passed into embedding layer, and most of the components in DT are specially de-
signed for the embedding outputs for feature extraction. Reasonable selection of categorical features is critical to
model performance.

If list of strings, interpreted as column names.

If 'auto', get the categorical columns automatically. object, bool and category columns will be selected by
default, and [auto_categorize] will no longer take effect.

If not necessary, we strongly recommend use default value 'auto'.

exclude_columns

list of strings, (default=[])

pos_label

str or int, (default=None)

10 Chapter 3. Example

DeepTables, Release 0.1.1

The label of positive class, used only when task is binary.

metrics

list of strings or callable object, (default=['accuracy'])

List of metrics to be evaluated by the model during training and testing. Typically you will use
metrics=['accuracy'] or metrics=['AUC']. Every metric should be a built-in evaluation metric in
tf.keras.metrics or a callable object like r2(y_true, y_pred):....

See also: https://tensorflow.google.cn/versions/r2.0/api_docs/python/tf/keras/metrics

auto_categorize

bool, (default=False)

Whether to automatically categorize eligible continuous features.

• True:

• False:

cat_exponent

float, (default=0.5), between 0 and 1

Only usable when auto_categrization = True.

Columns with (number of unique values < number of samples ** cat_exponent) will be
treated as categorical feature.

cat_remain_numeric

bool, (default=True)

Only usable when auto_categrization = True.

Whether continuous features transformed into categorical retain numerical features.

• True:

• False:

auto_encode_label

bool, (default=True)

Whether to automatically perform label encoding on categorical features.

auto_imputation

bool, (default=True)

Whether to automatically perform imputation on all features.

3.3. ModelConfig 11

https://tensorflow.google.cn/versions/r2.0/api_docs/python/tf/keras/metrics

DeepTables, Release 0.1.1

auto_discrete

bool, (default=False)

Whether to discretize all continuous features into categorical features.

fixed_embedding_dim

bool, (default=True)

Whether the embeddings output of all categorical features uses the same ‘output_dim’. It should be noted that some
components require that the output_dim of embeddings must be the same, including FM, AFM, CIN, MultiheadAt-
tention, SENET, InnerProduct, etc.

If False and embedding_output_dim=0, then the output_dim of embeddings will be calculated using the following
formula:

min(4 * int(pow(voc_size, 0.25)), 20)
#voc_size is the number of unique values of each feature.

embeddings_output_dim

int, (default=4)

embeddings_initializer

str or object, (default='uniform')

Initializer for the embeddings matrix.

embeddings_regularizer

str or object, (default=None)

Regularizer function applied to the embeddings matrix.

dense_dropout

float, (default=0) between 0 and 1

Fraction of the dense input units to drop.

embedding_dropout

float, (default=0.3) between 0 and 1

Fraction of the embedding input units to drop.

12 Chapter 3. Example

DeepTables, Release 0.1.1

stacking_op

str, (default='add')

• 'add'

• 'concat'

output_use_bias

bool, (default=True)

optimizer

str(name of optimizer) or optimizer instance or ‘auto’, (default='auto')

See tf.keras.optimizers.

• ‘auto’: Automatically select optimizer based on task type.

loss

str(name of objective function) or objective function or tf.losses.Loss instance or ‘auto’, (default=’auto’)

See tf.losses.

• ‘auto’: Automatically select objective function based on task type.

home_dir

str, (default=None)

The home directory for saving model-related files. Each time running fit(...) or fit_cross_validation(.
..), a subdirectory with a time-stamp will be created in this directory.

monitor_metric

str, (default=None)

earlystopping_patience

int, (default=1)

gpu_usage_strategy

str, (default='memory_growth')

• 'memory_growth'

• 'None'

3.3. ModelConfig 13

DeepTables, Release 0.1.1

distribute_strategy:

tensorflow.python.distribute.distribute_lib.Strategy, (default=None)

dnn_params

dictionary Only usable when ‘dnn_nets’ or a component using ‘dnn’ like ‘pnn_nets’,’dcn_nets’ included in [nets].

{
'dnn_units': ((128, 0, False), (64, 0, False)),
'dnn_activation': 'relu'}

)

autoint_params

dictionary Only usable when ‘autoint_nets’ included in [nets].

{
'num_attention': 3,
'num_heads': 1,
'dropout_rate': 0,
'use_residual': True

}

fgcnn_params

dictionary Only usable when ‘fgcnn_nets’ or a component using ‘fgcnn’ included in [nets].

{
'fg_filters': (14, 16),
'fg_widths': (7, 7),
'fg_pool_widths': (2, 2),
'fg_new_feat_filters': (2, 2),

}

fibinet_params

dictionary Only usable when ‘fibi_nets’ included in [nets].

{
'senet_pooling_op': 'mean',
'senet_reduction_ratio': 3,
'bilinear_type': 'field_interaction',

}

cross_params

dictionary Only usable when ‘cross_nets’ included in [nets].

14 Chapter 3. Example

DeepTables, Release 0.1.1

{
'num_cross_layer': 4,

}

pnn_params

dictionary Only usable when ‘pnn_nets’ or ‘opnn_nets’ included in [nets].

{
'outer_product_kernel_type': 'mat',

}

afm_params

dictionary Only usable when ‘afm_nets’ included in [nets].

{
'attention_factor': 4,
'dropout_rate': 0

}

cin_params

dictionary Only usable when ‘cin_nets’ included in [nets].

{
'cross_layer_size': (128, 128),
'activation': 'relu',
'use_residual': False,
'use_bias': False,
'direct': False,
'reduce_D': False,

}

3.4 Models

In recent years, a lot of neural nets have been proposed to CTR prediction and continue to outperform existing state-
of-the-art approaches. Well-known examples include FM, DeepFM, Wide&Deep, DCN, PNN, etc. DT provides most
of these models and will continue to introduce the latest research findings in the future.

3.4.1 Wide&Deep

Cheng, Heng-Tze, et al. “Wide & deep learning for recommender systems.” Proceedings of the 1st workshop on deep
learning for recommender systems. 2016.

Retrieve from: https://dl.acm.org/doi/abs/10.1145/2988450.2988454

Wide & Deep learning—jointly trained wide linear models and deep neural networks—to combine the
benefits of memorization and generalization for recommender systems. We productionized and evaluated
the system on Google Play, a commercial mobile app store with over one billion active users and over one

3.4. Models 15

https://dl.acm.org/doi/abs/10.1145/2988450.2988454

DeepTables, Release 0.1.1

million apps. Online experiment results show that Wide & Deep significantly increased app acquisitions
compared with wide-only and deep-only models.

3.4.2 DCN(Deep & Cross Network)

Wang, Ruoxi, et al. “Deep & cross network for ad click predictions.” Proceedings of the ADKDD’17. 2017. 1-7.

Retrived from: https://dl.acm.org/doi/abs/10.1145/3124749.3124754

Deep & Cross Network (DCN) keeps the benefits of a DNN model, and beyond that, it introduces a novel
cross network that is more efficient in learning certain bounded-degree feature interactions. In particular,
DCN explicitly applies feature crossing at each layer, requires no manual feature engineering, and adds
negligible extra complexity to the DNN model.

3.4.3 PNN

Qu, Yanru, et al. “Product-based neural networks for user response prediction.” 2016 IEEE 16th International Confer-
ence on Data Mining (ICDM). IEEE, 2016.

Retrived from: https://ieeexplore.ieee.org/abstract/document/7837964/

Product-based Neural Networks (PNN) with an embedding layer to learn a distributed representation of
the categorical data, a product layer to capture interactive patterns between inter-field categories, and
further fully connected layers to explore high-order feature interactions.

16 Chapter 3. Example

https://dl.acm.org/doi/abs/10.1145/3124749.3124754
https://ieeexplore.ieee.org/abstract/document/7837964/

DeepTables, Release 0.1.1

3.4.4 DeepFM

Guo, Huifeng, et al. “Deepfm: An end-to-end wide & deep learning framework for CTR prediction.” arXiv preprint
arXiv:1804.04950 (2018).

Retrieve from: https://arxiv.org/abs/1804.04950

DeepFM, combines the power of factorization machines for recommendation and deep learning for feature
learning in a new neural network architecture. Compared to the latest Wide & Deep model from Google,
DeepFM has a shared raw feature input to both its “wide” and “deep” components, with no need of
feature engineering besides raw features. DeepFM, as a general learning framework, can incorporate
various network architectures in its deep component.

3.4.5 xDeepFM

Lian, Jianxun, et al. “xdeepfm: Combining explicit and implicit feature interactions for recommender systems.”
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018.

Retrieve from: https://dl.acm.org/doi/abs/10.1145/3219819.3220023

A novel Compressed Interaction Network (CIN), which aims to generate feature interactions in an explicit
fashion and at the vector-wise level. We show that the CIN share some functionalities with convolutional
neural networks (CNNs) and recurrent neural networks (RNNs). We further combine a CIN and a clas-
sical DNN into one unified model, and named this new model eXtreme Deep Factorization Machine
(xDeepFM).

3.4. Models 17

https://arxiv.org/abs/1804.04950
https://dl.acm.org/doi/abs/10.1145/3219819.3220023

DeepTables, Release 0.1.1

3.4.6 AFM

Xiao, Jun, et al. “Attentional factorization machines: Learning the weight of feature interactions via attention net-
works.” arXiv preprint arXiv:1708.04617 (2017).

Retrieve from: https://arxiv.org/abs/1708.04617

Attentional Factorization Machine (AFM), which learns the importance of each feature interaction from
data via a neural attention network. Extensive experiments on two real-world datasets demonstrate the
effectiveness of AFM. Empirically, it is shown on regression task AFM betters FM with a 8.6% relative
improvement, and consistently outperforms the state-of-the-art deep learning methods Wide&Deep and
DeepCross with a much simpler structure and fewer model parameters.

3.4.7 AutoInt

Song, Weiping, et al. “Autoint: Automatic feature interaction learning via self-attentive neural networks.” Proceedings
of the 28th ACM International Conference on Information and Knowledge Management. 2019.

Retrieve from: https://dl.acm.org/doi/abs/10.1145/3357384.3357925

AutoInt can be applied to both numerical and categorical input features. Specifically, we map both the
numerical and categorical features into the same low-dimensional space. Afterwards, a multihead self-
attentive neural network with residual connections is proposed to explicitly model the feature interactions

18 Chapter 3. Example

https://arxiv.org/abs/1708.04617
https://dl.acm.org/doi/abs/10.1145/3357384.3357925

DeepTables, Release 0.1.1

in the lowdimensional space. With different layers of the multi-head selfattentive neural networks, differ-
ent orders of feature combinations of input features can be modeled. The whole model can be efficiently
fit on large-scale raw data in an end-to-end fashion.

3.4.8 FiBiNet

Huang, Tongwen, Zhiqi Zhang, and Junlin Zhang. “FiBiNET: combining feature importance and bilinear feature
interaction for click-through rate prediction.” Proceedings of the 13th ACM Conference on Recommender Systems.
2019.

Retrieve from: https://dl.acm.org/doi/abs/10.1145/3298689.3347043

FiBiNET as an abbreviation for Feature Importance and Bilinear feature Interaction NETwork is proposed
to dynamically learn the feature importance and fine-grained feature interactions. On the one hand, the
FiBiNET can dynamically learn the importance of features via the Squeeze-Excitation network (SENET)
mechanism; on the other hand, it is able to effectively learn the feature interactions via bilinear function.

3.4. Models 19

https://dl.acm.org/doi/abs/10.1145/3298689.3347043

DeepTables, Release 0.1.1

3.4.9 FGCNN

Liu, Bin, et al. “Feature generation by convolutional neural network for click-through rate prediction.” The World
Wide Web Conference. 2019.

Retrieve from: https://dl.acm.org/doi/abs/10.1145/3308558.3313497

Feature Generation by Convolutional Neural Network (FGCNN) model with two components: Feature
Generation and Deep Classifier. Feature Generation leverages the strength of CNN to generate local
patterns and recombine them to generate new features. Deep Classifier adopts the structure of IPNN to
learn interactions from the augmented feature space. Experimental results on three large-scale datasets
show that FGCNN significantly outperforms nine state-of-the-art models. Moreover, when applying some
state-of-the-art models as Deep Classifier, better performance is always achieved, showing the great com-
patibility of our FGCNN model. This work explores a novel direction for CTR predictions: it is quite
useful to reduce the learning difficulties of DNN by automatically identifying important features.

3.5 Layers

3.5.1 FM

Factorization Machine to model order-2 feature interactions.

Call arguments:

• x: A 3D tensor.

Input shape:

• 3D tensor with shape: (batch_size, field_size, embedding_size)

Output shape:

• 2D tensor with shape: (batch_size, 1)

References:

20 Chapter 3. Example

https://dl.acm.org/doi/abs/10.1145/3308558.3313497

DeepTables, Release 0.1.1

• [1] Rendle S. Factorization machines[C]//2010 IEEE International Conference on Data Mining. IEEE, 2010:
995-1000.

• [2] Guo H, Tang R, Ye Y, et al. Deepfm: An end-to-end wide & deep learning framework for CTR prediction[J].
arXiv preprint arXiv:1804.04950, 2018.

3.5.2 AFM

Attentional Factorization Machine (AFM), which learns the importance of each feature interaction from data via a
neural attention network.

Arguments:

• hidden_factor: int, (default=16)

• activation_function : str, (default=’relu’)

• kernel_regularizer : str or object, (default=None)

• dropout_rate: float, (default=0)

Call arguments:

• x: A list of 3D tensor.

Input shape:

• A list of 3D tensor with shape: (batch_size, 1, embedding_size)

Output shape:

• 2D tensor with shape: (batch_size, 1)

References:

• [1] Xiao J, Ye H, He X, et al. Attentional factorization machines: Learning the weight of feature interactions
via attention networks[J]. arXiv preprint arXiv:1708.04617, 2017.

• [2] https://github.com/hexiangnan/attentional_factorization_machine

3.5.3 CIN

Compressed Interaction Network (CIN), with the following considerations: (1) interactions are applied at vector-wise
level, not at bit-wise level; (2) high-order feature interactions is measured explicitly; (3) the complexity of network
will not grow exponentially with the degree of interactions.

Arguments:

• cross_layer_size: tuple of int, (default = (128, 128,))

• activation: str, (default=’relu’)

• use_residual: bool, (default=False)

• use_bias: bool, (default=False)

• direct: bool, (default=False)

• reduce_D:bool, (default=False)

Call arguments:

• x: A 3D tensor.

Input shape:

3.5. Layers 21

https://github.com/hexiangnan/attentional_factorization_machine

DeepTables, Release 0.1.1

• A 3D tensor with shape: (batch_size, num_fields, embedding_size)

Output shape:

• 2D tensor with shape: (batch_size, *)

References:

• [1] Lian J, Zhou X, Zhang F, et al. xdeepfm: Combining explicit and implicit feature interactions for recom-
mender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining. 2018: 1754-1763.

• [2] https://github.com/Leavingseason/xDeepFM

3.5.4 MultiheadAttention

A multihead self-attentive nets with residual connections to explicitly model the feature interactions.

Arguments:

• num_head: int, (default=1)

• dropout_rate: float, (default=0)

• use_residual: bool, (default=True)

Call arguments:

• x: A 3D tensor.

Input shape:

• 3D tensor with shape: (batch_size, field_size, embedding_size)

Output shape:

• 3D tensor with shape: (batch_size, field_size, embedding_size*num_head)

References:

• [1] Song W, Shi C, Xiao Z, et al. Autoint: Automatic feature interaction learning via self-attentive neural net-
works[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.
2019: 1161-1170.

• [2] https://github.com/shichence/AutoInt

3.5.5 FGCNN

Feature Generation nets leverages the strength of CNN to generate local patterns and recombine them to generate new
features.

Arguments:

• filters: int, the filters of convolutional layer

• kernel_height: int, the height of kernel_size of convolutional layer

• new_filters: int, the number of new features’ map in recombination layer

• pool_height: int, the height of pool_size of pooling layer

• activation: str, (default=’tanh’)

Call arguments:

22 Chapter 3. Example

https://github.com/Leavingseason/xDeepFM
https://github.com/shichence/AutoInt

DeepTables, Release 0.1.1

• x: A 4D tensor.

Input shape:

• 4D tensor with shape: (batch_size, field_size, embedding_size, 1)

Output shape:

• pooling_output - 4D tensor

• new_features - 3D tensor with shape: (batch_size, field_size*new_filters, embedding_size)

References:

• [1] Liu B, Tang R, Chen Y, et al. Feature generation by convolutional neural network for click-through rate
prediction[C]//The World Wide Web Conference. 2019: 1119-1129.

3.5.6 SENET

SENET layer can dynamically increase the weights of important features and decrease the weights of uninformative
features to let the model pay more attention to more important features.

Arguments:

• pooling_op: str, (default=’mean’). Pooling methods to squeeze the original embedding E into a statistic vector
Z

• reduction_ratio: float, (default=3). Hyper-parameter for dimensionality-reduction

Call arguments:

• x: A 3D tensor.

Input shape:

• 3D tensor with shape: (batch_size, field_size, embedding_size)

Output shape:

• 3D tensor with shape: (batch_size, field_size, embedding_size)

References:

• [1] Huang T, Zhang Z, Zhang J. FiBiNET: combining feature importance and bilinear feature interaction for
click-through rate prediction[C]//Proceedings of the 13th ACM Conference on Recommender Systems. 2019:
169-177.

3.5.7 BilinearInteraction

The Bilinear-Interaction layer combines the inner product and Hadamard product to learn the feature interactions.

Arguments:

• bilinear_type: str, (default=’field_interaction’). The type of bilinear functions

– field_interaction

– field_all

– field_each

Call arguments:

• x: A 3D tensor.

3.5. Layers 23

DeepTables, Release 0.1.1

Input shape:

• 3D tensor with shape: (batch_size, field_size, embedding_size)

Output shape:

• 3D tensor with shape: (batch_size, *, embedding_size)

References:

• [1] Huang T, Zhang Z, Zhang J. FiBiNET: combining feature importance and bilinear feature interaction for
click-through rate prediction[C]//Proceedings of the 13th ACM Conference on Recommender Systems. 2019:
169-177.

3.5.8 Cross

The cross network is composed of cross layers to apply explicit feature crossing in an efficient way.

Arguments:

• num_cross_layer: int, (default=2). The number of cross layers

Call arguments:

• x: A 2D tensor.

Input shape:

• 2D tensor with shape: (batch_size, field_size)

Output shape:

• 2D tensor with shape: (batch_size, field_size)

References:

• [1] Wang R, Fu B, Fu G, et al. Deep & cross network for ad click predictions[M]//Proceedings of the AD-
KDD’17. 2017: 1-7.

3.5.9 InnerProduct

InnerProduct layer used in PNN

Call arguments:

• x: A list of 3D tensor.

Input shape:

• A list of 3D tensor with shape (batch_size, 1, embedding_size)

Output shape:

• 2D tensor with shape: (batch_size, num_fields*(num_fields-1)/2)

References:

• [1] Qu Y, Cai H, Ren K, et al. Product-based neural networks for user response prediction[C]//2016 IEEE 16th
International Conference on Data Mining (ICDM). IEEE, 2016: 1149-1154.

• [2] Qu Y, Fang B, Zhang W, et al. Product-based neural networks for user response prediction over multi-field
categorical data[J]. ACM Transactions on Information Systems (TOIS), 2018, 37(1): 1-35.

• [3] https://github.com/Atomu2014/product-nets

24 Chapter 3. Example

https://github.com/Atomu2014/product-nets

DeepTables, Release 0.1.1

3.5.10 OuterProduct

OuterProduct layer used in PNN

Arguments:

• outer_product_kernel_type: str, (default=’mat’). The type of outer product kernel

– mat

– vec

– num Call arguments:

• x: A list of 3D tensor.

Input shape:

• A list of 3D tensor with shape (batch_size, 1, embedding_size)

Output shape:

• 2D tensor with shape: (batch_size, num_fields*(num_fields-1)/2)

References:

• [1] Qu Y, Cai H, Ren K, et al. Product-based neural networks for user response prediction[C]//2016 IEEE 16th
International Conference on Data Mining (ICDM). IEEE, 2016: 1149-1154.

• [2] Qu Y, Fang B, Zhang W, et al. Product-based neural networks for user response prediction over multi-field
categorical data[J]. ACM Transactions on Information Systems (TOIS), 2018, 37(1): 1-35.

• [3] https://github.com/Atomu2014/product-nets

3.6 FAQ

3.6.1 How. . .

3.6. FAQ 25

https://github.com/Atomu2014/product-nets

DeepTables, Release 0.1.1

26 Chapter 3. Example

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

27

	DeepTables: Deep-learning Toolkit for Tabular data
	Overview
	Example
	Quick-Start
	Exapmles
	ModelConfig
	Models
	Layers
	FAQ

	Indices and tables

